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ABSTRACT

THE APPLICATION OF A DETERMINISTIC

SPECTRAL DOMAIN METHOD TO THE

ANALYSIS OF PLANAR CIRCUIT

DISCONTINUITIES ON OPEN

SUBSTRATES

by

JAMES STUART MCLEAN, B.S., M.S.

SUPERVISING PROFESSOR: Tatsuo Itoh

A deterministic formulation of the method of moments carried out in the

spectral domain is extended to include the effects of two-dimensional, two-

component current flow in planar transmission line discontinuities on open

substrates. The method includes the effects of space-wave and surface-wave

radiation through the use of the exact spectral domain Green's function. The

procedure and formulation of the methnd are described in detail. Also, tech-

niques used to increase the numerical efficiency are described in detail. The

iii



method is used to determine accurate circuit models of three types of planar

circuit discontinuities on open substrates: microstrip open-end discontinuities,

slotline short-circuit discontinuities, and microstrip gap discontinuities. The

analysis is then applied to gap-coupled resonators. The coupling between cas-

caded gap discontinuities is shown to be significant when the substrate is elec-

trically thick since surface wave excitation is strong. Possibilities for further

applications of the method to more complicated discontinuities are discussed.
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Chapter 1

INTRODUCTION

1.1 Motivation

Planar circuits and antennas are attractive because of low cost, manu-

facturability, small size and light weight. Recently, integrated planar front-end

systems combining both antennas and circuits have been developed. Because

planar circuits are extremely difficult to modify and tune, very accurate mod-

els are required for the design process in order to avoid costly design itera-

tions. The modelling of unshielded open planar circuits is complicated by the

possibility of surface wave and space wave radiation. In the case of open pla-

nar transmission line structures, discontinuities can generate space-wave and

surface-wave radiation. This may be desirable, as in the case of planar anten-

nas. For example, in Figure 1.1 [1], a planar antenna array is shown which

makes use of microstrip open-end discontinuities as radiating elements. In the

case of most circuit applications, radiation is undesirable because it can cause

loss and extraneous coupling. Extraneous radiation and coupling may also ad-

versely affect the performance of antennas. In the antenna shown in Figure 1.1,

radiation ideally occurs from the open-end discontinuities. However, radiation

from other parts of the circuit can occur as can coupling between radiating ele-

ments through both space wave and surface wave propagation. It is, therefore,

necessary to include these effects in the design of the antenna.
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P

X/2

Radiating Elements

Figure 1.1: 5-Element Microstrip Combline Travelling-Wave Antenna

A grounded dielectric substrate can support both transverse mag-

netic (TM) and transverse electric (TE) surface wave modes of propagation.

For electrically thin substrates (d < .01A), surface waves are not strongly ex-

cited [2]. However, in the case of electrically thick substrates such as GaAs

millimeter-wave integrated circuit (MMIC) substrates, the effects of surface

waves are more prominent. The cutoff frequencies of the even TM and the odd

TE surface wave modes of a grounded dielectric slab are given by [3]

L nco
f 2dVf_/=1

where d is the thickness of the substrate, fR is the relative dielectric constant

of the substrate, co is free space wave velocity and n is the order of the surface

wave mode (n = 0,2,4,... for TM and n = 1,3,5,... for TE). In Table 1.1,

the cutoff frequencies for the 4 lowest order surface wave modes are given for
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mode cutoff frequency
"'25 mil Alumina (ER = 9.9) 25 mil GaAs (ER = 12.8)

TM0  DC DC
TE, 39.590 GHz 34.380 GHz
TM 2  79.180 GHz 68.770 GHz
TE 3  118.77 GHz 103.15 GHz

Table 1.1: Cutoff Frequencies for Surface-wave Modes of Conductor-backed
Dielectric Slab

two widely used substrates. Because the TMo surface wave mode has no cutoff

frequency, there is always at least one surface mode which can propagate on

an open substrate. At millimeterwave frequencies, several surface wave modes

may propagate. For example, in the upper K. band (33 to 36 GHz), both

TMo and TE, may propagate on a conductor backed 25 mil GaAs substrate.

Surface wave excitation can result in losses and extraneous coupling in open

planar cicuits. The excess coupling may or may not be desirable depending

on the application. However, because these effects become prominent at high

frequencies, it is necessary to develop full-wave models so that they may be

accounted for in the design of planar circuits and antennas.

1.2 Previous Work

Discontinuities in planar transmission lines have been the subject

of numerous analytical investigations. Most of these analyses make use of

quasi-static approximations [4]-[12]. These approximations limit the analysis

to frequencies at which the dimensions of the circuit are small compared to a

wavelength, and the effects of radiation may be neglected. This dissertation

is concerned with the full-wave analysis of discontinuities in planar circuits on
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open substrates. By full-wave analysis we mean that the method of analysis

makes use of an exact Green's function' for a current source above a grounded

dielectric slab. Thus the analysis includes the effects of space-wave and surface-

wave radiation. It does not include the effects of conductor loss or conductor

thickness.

Some work has already been done in the area of fullwave analysis

of planar transmission line discontinuities. All of the work discussed below

has in common the use of the exact Green's function for the grounded di-

electric slab. The work may be divided into two categories, eigenvalue and

deterministic approaches. The eigenvalue approach involves determining the

eigenfrequencies of a resonant structure and then extracting the parameters of

the discontinuity. For example, a long rectangular resonator may be analyzed

in order to determine the characteristics of an open-end discontininuity [14].

First, the resonant frequencies of the resonator are determined. Then, from the

resonant frequencies and the physical length of the resonator, the capacitance

and conductance of the open-circuit discontinuity can be determined. The de-

terministic approach involves making use of a source formulation to excite a

system. In the case of the open-end discontinuity, an incident wave may be

used as the source formulation, and the complex reflection coefficient of the

open-end may be solved for directly. Each method has specific advantages and

disadvantages as described below.

1Several different Green's functions have been derived. See [131.
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1.2.1 Eigenvalue Formulation

e The variational formulation reduces error introduced by inadequacies in

basis functions.

* The determinant search is numerically expensive. In the case of a ra-

diating structure, the eigenvalue becomes complex and the search two-

dimensional.

* Network parameters are not directly determined. Instead, they must be

inferred from resonant frequencies and Q values. This is inconvenient and

can be numerically unstable.

1.2.2 Deterministic Formulation

* Network parameters may be directly calculated. Deterministic formula-

tions allow for the direct calculation of scattering parameters or short-

circuit parameters

* A determinant search is not required. The deterministic formulation

requires only the filling and inverting of a single matrix.

e The formulation for the network parameters is not variational. Therefore,

the error introduced through inadequate basis functions is not reduced.

Jackson and Pozar [15] analyzed microstrip open-end and symmetric

gap discontinuities using a moment method in the spectral domain. They ne-

glected transverse current flow on the strip and mode conversion. They made

use of a travelling-wave source/load formulation. Katehi and Alexopolous [16]
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also analyzed open-end and symmetric gap discontinuities using a moment

method in the space domain. Their analysis was performed using a voltage-

gap generator source formulation. They used approximations similar to those

used by [15]. Boukamp and Jansen [17] have analyzed open-end discontinu-

ities in a covered but laterally open environment using a moment method in

the spectral domain. Their analysis included the effects of transverse current

flow on the strip but not the effects of mode conversion. They made use of a

travelling-wave source formulation similar to [15]. Yang and Alexopolous [18]

analyzed open-end and gap discontinuities in an open microstrip with a dielec-

tric superstrate using a spectral domain moment method and a travelling-wave

source formulation. Drissi et al [19, 20] analyzed symmetric gap discontinuities

in open microstrip using a space domain moment method applied to the mixed

potential integral equation. Although it is not made clear in their paper, they

seem to have included the effects of two-component current flow and mode

conversion. They used a voltage-gap source formulation similar to [16].

Jackson [21] has analyzed open circuit discontinuities in coplanar

waveguide. Yang [22] has analyzed short-circuit slotline discontinuities using

a moment method in the spectral domain. He assumed a purely transverse

electric field in the slot.

1.3 Organization of This Report

The remainder of this report is organized as follows. In Chapter 2,

the theory underlying the method is presented. The details of the numerical

computation, including the selection of basis functions and techniques to speed
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up the numerical integration, are given in Chapter 3. In Chapter 4, the method

is applied to the microstrip open-end discontinuity. In Chapter 5, the method

is applied to the short circuit slotline discontinuity. In Chapter 6, the method

is applied to the microstrip gap discontinuity and the gap-coupled resonator.

Finally, in Chapter 7, some conclusions are drawn and suggestions for improve-

ments to the method are made. Also, further applications of the method are

proposed. The Green's functions used in the analysis are derived using the

immitance approach [13] in Appendices 1 and 2.



Chapter 2

THEORY

In this chapter we present the theory underlying the deterministic

spectral domain analysis. Only the theory common to all of the analysis will be

presented here; the details of the analysis as it applies to specific discontinuities

will be presented in subsequent chapters. We begin by developing the integral

equation which will form the basis for all of the analysis in this study.

2.1 Integral Equation Formulation

In this section, we develop the integral equation appropriate for the

analysis of microstrip line and microstrip discontinuities. Referring to the coor-

dinate system in Figure 2.1, the electric field in the plane y = d due to currents

localized in the plane y = d can be expressed as the convolution of a source

current and a Green's function. The components of the Green's function rep-

resent the x and z directed electric field due to a z-directed and an x-directed

infinitesimal horizontal current element (Hertzian dipole) over a grounded di-

electric slab of infinite extent. Since the Green's function is actually a dyadic,

we write two equations, one for the z-directed electric field and one for the

x-directed field.

8
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- - y-d

c - cc. (substrate)

I ) x

z (out of the poge)

Figure 2.1: Coordinate System for Dielectric Slab

E, (x, d, z) = fZ22,(x - xo, z - zo)J2 (xo, zo) dxo dzo
10 2o

+ J J Z..(x - xo, z - zo)J.(xo, zo) dxo dzo (2.1)
X:0 20

E2 :(x, d, z) = JfI Z~,2(x - x0, z - zo)J.(xo, zo) dxo dzO
2:0 20

+ f Z,(x - xo, z - zo)J,(xo, zo) dxo dzo (2.2)-To ZO

20 20

In order to develop the integral equation, we enforce the boundary condition

requiring that the components of the tangential electric field, E, and E,', be

zero on the conductor.

J I Z..(x - xo, z - zo)J 2 (xo, zo) dxo dzo
X0 20
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+ JJ Z ,,,(x - Xo, z - zo)J :(xo, zo) dxo dzo = 0 for x, z E S. (2.3)
10 20

J J Z..(x - xo, z - zo)J 2 (xo, zo) dxo dzo
X0 2o

+ I J Z((x - xo, z - zo)J.(xo, zo) dxo dzo = 0 for x, z E S. (2.4)
20 2O

These equations constitute a set of coupled integral equations for the unknown

current on the conductor. These two equations together are equivalent to the

electric field integral equation (EFIE). They are Fredholm equations of the

first type [24]; that is, the unknown functions, J(xo, zo) and J.,(xo, zo) appear

only in the integrands. At this point we can transform the coupled integral

equations into coupled algebraic equations in the spectral domain as in [26] by

making use of the convolution theorem [24].

2 .. (a,/3)J(a,3) + Z2 .(a,/3)i.(a,/3) = z E(a,/3) (2.5)

2 .. (a,/3)(,/3) + 2..(ct, /3)J.(a, /3) = (a, /3) (2.6)

The following convention is used for the Fourier transform.

+00+ 00

F(ca, 3) - J J F(x,z)exp(+j/3z)exp(+jrx)dxdz (2.7)
-- 00+

F(x,z) 1 (2+)2ff F(a, 3)exp(-jo3z)exp(-jaxr)da 3 (2.8)

However, although this is the usual method, it does not make any difference at

which point in the analysis we transform to the spectral domain. Notice at this

point the coupled algebraic equations contain the unknown functions j,(a, /3),

]=(a,/), E (a,), and E=(a,9). So it appears we have introduced two more

unknown functions by transforming into the spectral domain. However, it will
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be seen that the functions k,(a, /3), and E,,(a, 03) will be eliminated in the

solution process. Whether we choose to solve the coupled integral equations in

the space domain or the coupled algebraic equations in the spectral domain,

we must solve for unknown functions. To do this we make use of the method

of moments to solve the coupled integral equations (in the space domain) or

coupled algebraic equations (in the spectral domain). Since it is easier to

visualize the problem in the space domain, we will proceed from the coupled

integral equations.

2.2 The Application of the Method of Moments

As pointed out in the previous section, the coupled space-domain in-

tegral equations and the coupled spectral domain algebraic equations contain

unknown functions. Therefore, the first step in solving the equations is to ex-

pand the unknown current in an appropriate set of known expansion functions.

M

J.(xo, zo) = ZaJ, P(xo,zo), and

M
J.(xo, zo) _b,,,Ja(Xo, Zo),

1

where a, and bm are unknown constants. The required expansion functions

are dependant on the particular problem. They will be discussed in detail

in Chapter 3. In the deterministic formulation, in addition to the unknown

current we also have a known source current the z-directed and x-directed

components of which are given by

jo,rce(Xo, Zo) and

Jou'"ce (Xo, zo) respectively.
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Upon substitution into the EFIE we obtain

JJZ:(x - Xo, Z - Zo) amJ~Pa(xo, Zo) ± J;u c(xo, Zo)] dxodz

x0 zo J ( bmJ. r (Xo, Zo) + Jurce (o, ZO) o =

S1 1O

x, z E S, and (2.9)

J Zzz(X - xo, Z - zo) aJa(x0,,z 0 ) + Jutc(x0, z0)] dxodzo

XO zO

x,z E S. (2.10)

So we have a set of two coupled integral equations with 2M unknown constants.

In order to generate a linear system of equations, we test the set of equations

using an appropriate set of testing functions.

J.(x, z). .. g- t (E, z).

As with the expansion functions, the appropriate testing functions depend on

the particular problem. These will be discussed in detail in Chapter 3. The

testing functions are used to generate 2N equations as follows.
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I e~tstxzf
x z X0 zo

Zz [~(X - xTolz -z 0) ( m (X0, zo) + J~i- c(X,ZO))

Zzx(X - XO,z - z0) (~ m (XO, ZO)+Jotre 0 z)]

dxO dzO dx dz =0

I : f ~(XI Z)J
x z X0 zo

* - xo, z -ze' pa aPxo zo " surce( 0 Z)

+ Zzz(x -xo,z - z) (Ebm "aX, ZO) + J,. r~(X0,ZO))

dxO dzO dx dz =0

x z -ToZO

* Z..(x - 0, z - z) Eam Jzpa( X0, zo) + Jsource (X 0 , Z))

+ Z..x - X0, z - ZO) (bJ,"Pa(xo, zo) + jsourc~xzo)

dxO dzO dx dz = 0

z Zr ZO

* Z..(x - X0, z - zo) E mJzP(X, 0 + Jaurce( 1 0

+Z..(x - X0, z - ZO) bmJ; ,m (z0) +

dxO dzO dx dz =0 (.1
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In the space domain, the right-hand side of the integral equation is

zero because the electric field is zero on the conductor. However, the corre-

sponding spectral domain algebraic equation is not zero because the Fourier

transform covers the entire y = d plane. In the eigenvalue approach [26], Par-

seval's theorem is used to show that the right-hand side of the tested equations

is zero. The same situation exists for the excitation case. Note here that the

right-hand side of the tested space-domnain equations is zero. If we had teoted

the equations in the spectral domain, the right-hand side would still be zero

by Parseval's theorem. The source term is embedded in the left-hand side of

the equation. In some situations it will be desirable to use a differeni, number

of testing functions than expansion functions to generate an overdetermined

system f equations. In the case of an excitation problem, in general, it is no,

possible to make use of Galerkin's method'.

The te-;ted equations result in a linear system

[[K..] [KZX] ][ja] I r [s 1S][K .][K .] [b] LS-

where [a] and [b] are vectors of length M containing the unknown constants

a, ... am and b, ... bM in the expansions for J. and J., [K, ] ... [Kg.T] are Al x.V

matrices given in the space domain by

'Actually, while it is not possible to apply Galerkin's method to a deterministic problem
using a travelling wave source formulation, it is possible to do so . hen a localized sourcc is
used. For example a planar dipole driven by a current source at the center could be analyzed
using Galerkin's method because the current exists only over a finite area.
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+00 +00 +00 +00

= JJJJ ' Js(X, Z) Z, (X - X 0, z - O
-00 -00 -00 -00

J'jp'(xo, zco) dx dz dxo dzo, (2.12)
+00 +00 +00 +00

K~ =JJJ 
tei(X, Z) Z,.,(X - x , z- ZO)

-00 -00 -00 -00

*JeX'Pa(x0 , zo) dx dz dxo dzo, (2.13)
+00 +00 +00 +00

K7 f = 111 .t, (X, Z) Z ,(X - Xo, z- ZO)
-00 00 00 00

-J,70p(x0, zo) dxdz dx 0dzO, and (2.14)
+00 +00 +00 +00

K =r JJJ IfIJt t( X, Z)Z,.,(X X0z- O
-00 00 -00 00

-J Pa(x o, zo) dx dz dxo dzo (.5

and [S,.] and [S.,] are vectors of length M given by

+00 +00 +00 +00

= f/f I Jt~~est( )~(-x zz)
S:J-,i(~JJJ;(-O~-O

0-00 00 -00

Jsource (xo, Z0) dx dz dxo dzo
+00 +00 +00 +00

lii jtes , )Z(X - Xo, z - zo)
-- 00 0-00 00

* Jaource (xo zo) dx dz dxO dzO, and (2.16)
+00 +00 +00 +0

=F -J J .~t xZ(X - X0, z - ZO)
-00 __ -00 0

.JzSourCe(xo, zo) dx dz dxO dzO
+00 +00 +00 +00

fff IteI ixt:"X Z) Z.. (x - X0, z - ZO)

-00 00 00 00

J.Souc (X ,z)dx dzdxodzo (2.17)

However, since the Green's function is only available in closed form in the

spectral domain, these integrals are six-dimensional and therefore extremely
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expensive to evaluate. Some work has been performed to reduce this complexity

[16]. In order to transform the integrals into the spectral domain, we express the

space domain Green's function as the inverse Fourier transform of its spectral

domain counterpart. For example

+00 +00

Z,,(X - Xo, Z - zo) = J J Z () exp(-j3(x - xo))
-00-00

• exp(-Ja(z - zo))dadO3 (2.18)

We then substitute this expression into the integral to obtain

+00 +00 +00 +00

-00 ,00 -00-00

+00+00

I f J2-(, 0) exp(-j'O(x - xo)) exp(-ja(z - zo))dado
-00-00

J Jep(xo, Zo) dx dz dxo dzo. (2.19)

Rearranging the order of integration, we obtain

+0 +0 r +00 +0

j - c ii-i J (x, z) exp(-jIx) exp(-jaz)dx dz
-00 00 -00 -00

+00+001J f J Xa7 (xo, zo) exp(j/xo) exp(jcazo)dxo dzOJ dd3. (2.20)
0000

We recognize that

+00+00

,]test. f J . test, z)exp(-j 3x) exp(- j*z)dx dz, and (2.21)

-00-00

+00+00

Je!Pa(C)= J j (xo,o) exp(jxo) exp(jazo)dxo dzo. (2.22)

-00-00
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Therefore, in the spectral domain, [K,,,]... [K.,.] are given by2

+00 +00f Jai (,3) da do, (2.23)
-00-00

+00+00

Kfz(i~j) = Ji( ,3)Z0(a, p)a~7a(a,/3) da dj3, (2.24)
-00 -00

+00+00

oo = J _J j-11: j ) da do, and (2.25)
-000

+00+00

t*= ,J (a,/3) 2 x(a,3)jexpa(C, )dad3. (2.26)
-00-00

and [Sz] and [S., ] are vectors of length M given by

+00+00

I = J jiei (a (a)Z2 2 (a,,.), uce(,/3)dad/3
00-00

+00+00

+ J J and (2.27)
-00-00

S J J +00+0 0, /3)2.(a, 3)j;our°c(a, 3) da d
-00-00

+00+00

+ J J (a, 2)Z ,(a, f3)jurce (a, f)dad/3. (2.28)
-00-00

The linear system is now solved for a, .. . am and b ... bM using Gaus-

sian elimination if the system is square. If the system is overdetermined we

generate

[K..] [K Tr] [K..g] [a] 1 [K2.] [[b]2K ] T ' 1

2Notice tha. in the formulation given here, the convention for the Fourier transform is the
opposite of that used in [15]. Therefore, the conjugation in the inner products is performed
on the testing functions as opposed to the expansion functions.
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where the superscript "T" denotes the transpose of a matrix. We can then

solve the resultant 2M x 2M linear system of equations. This is equivalent to

a least squares formulation.

2.3 The Green's Function

The characteristics of the Green's function are important because

much information may be derived from thorm. The spectral domain Green's

functions used in the following analysis are derived using the immittance ap-

proach (261 in Appendices 1 and 2.

The spectral domain Green's function for the grounded dielectric slab

is given by

2= -N2" 2 -h
=NZ , (2.29)

=zX = -NN(Ze - Zh), (2.30)

Z. = -NN(Z'- Zh) and, (2.31)

.Z= _N e _ N2h, (2.32)

where

N - ,, (2.33)

N. = a , (2.34)

_ 1 -(2.35)

h _ 1 (2.36)

= kTMI, (2.37)
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k2 = YTM 2 coth(72d), (2.38)

= YTEi, (2.39)

Y 2 =Y TE 2 oth(y2d), (2.40)

YTM - j=w;O (2.41)
71

YTM2 z jwREO , (2.42)
72

= 1 - 7 (2.43)
JWLA

TE2-= 72 (2.44)

71 = /C2 + 2 _k2 and, (2.45)

72 - l 2 + 132 - Rk 2 "  (2.46)

It can be seen that the components of the Green's function have poles corre-

sponding to the poles of 2e and 2h. The poles of 2e correspond to the TM

surface waves, and the poles of 2h correspond to the TE surface waves. The

poles occur when

ER Y1 + 72 tanh(72d) = 0, and (2.47)

71 + 72 coth(-f2d) = 0. (2.48)

In order to facilitate the study of the surface wave poles, we perform a change

of variables defined by

p = Va 2 + 2 , and (2.49)

0 = tans (f) . (2.50)

We note that 2e and 2' are functions of p only. In this polar coordinate
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Region Range 71 72

1 p < k imaginary imaginary
2 k < p < VrUR'k real imaginary
3 V/ 'k < p real real

Tabl,- 2.1: Regions of the Radial Wavenuniber, p

system, the integrals take the following form.

+oo 2r
= esi * (p, O) 2 (p, 0)j' (p, O)p dp dO (2.51)

0 0

Now we define three regions as in Table 2.3. All of the surface wave poles occur

in region 2. This is occurs because, in order for a surface wave mode to exist,

the field outside the slab must be evanescent in the y-direction while the field

inside must be a standing wave in the y-direction. The values of p at which the

surface wave poles occur are the values of the propagation constants for the

surface wave modes. In order to evaluate the integrals, we must circumvent

the poles. The contributions of the poles are included via the calculation of the

residues at the poles. We can show that the poles are of the first order. Using

the integration path given in Figure 2.2 and the Cauchy's residue theorem, we

can show that when only the TMo mode can propagate, Kzz(i,j) ... Kfxx(i,j) are

given by

PTMO- 6 27r

= J ~ J jt*( O)-(p)expap9)dpd(esi*(pO)Z , ,(pO)Jj (p, ) pdp dO
0 0

( (j p, P , )2 z(P,O)JIe*7p(p,O)) , p~ dO
0
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+oo 2v

+ J Jei(p, 0)Z (p, 0) 7(p, 9) pdp dO (2.52)
PTMO+8 0

The singularity occurs only in the Green's function, so we write

PTMO-6 2wr

=fOj J J (p 0)Z2 ,(p, 0) jPQ(p, 9) da do3
0 0

27r

- "'1jis(P,)Zz-.TM(P,9)j J;2 pa(p,9) da dO
0

+ J Jjest* (p 9) '. (p, ) jeza (p, 9) da do3, (3

PTMO+6 0
PTMO-

6 2wr

I J Ji(P, 0)Z2..(p, 0) 4expa(p, 9) da do3
o 0
2ir

-~ j-i (P 0) 2.T (P, 0)CP~ ) dcx do3
0

+~~ ~~~ ~~ J ~et( ) 2 ( )e (p, 9) dcx dfl, (2.54)
PTMO+

6 0

PTmo-
6 21r

= J f je
t (p, 0) 2 (p, 0) jzecp(p, 0) dcx do3

o o
27r

-i~J jtti. (P,9 )ZwTM(P,9) 0~,) dcd

0

+ J , f~i(P, 0) 2..(p, ) jexPQ(p )da d, and (2.55)
PTMO+-5 0

PTMO-b 27r

Kxj)= J J4 ji (p9 ) 2..(p, 0) expa (p 0) dcx d,3
0 0
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- f j (P, 0) 2TM(P, 0)j(p 0) d d3

0
00 2?r te . ~

~e a

+ I Jit* (p, )z2.(p,O ) 4e (p,a 0) d do (2.56)
PTMO+6 0

where

ZzzTM = -N. ZM, (2.57)

9 =TM = -NN.2M, (2.58)

2 =TM = -NN.2,M, (2.59)

ZxTM = -N 2.M, (2.60)

4M 1 a T! + '(2.61)
p a p

p - (-P) f(p),and (2.62)

:2)- (-)((p) + Y TM 2d
f
2(coth

2 (-ld) - l)) (2.63)

For TE modes the residue is given by

2.zTE = -N. E, (2.64)

ZTE= +NzN-2TE, (2.65)

2.zTE = +NZNX2hE and, (2.66)

ZxTE = - Nz E (2.67)

where

1 (2.68)

ap a
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2 and (2.69)

±- ) (k~Jh(P) + YTE 2d_12 (coth (-t2d) - 1)) . (2.70)

It should also be noted that the Green's function has a branch point at p = ko.

However, the Green's function is bounded at the branch point and therefore,

no numerical difficulty is encountered except the correct choice of Riemann

sheets. This amounts to choosing -y1 to be positive real for p > k0 and positive

imaginary for p < k0.There is no branch point at p = V/cko. This is because

72 always appears with coth(- 2d) in the Green's function thus cancelling the

sign of 72. Therefore, the sign of 72 need not be specified. The pole in the

Green's function corresponding to a particular surface-wave mode occurs at

the branch point at the cutoff frequency of the mode and then migrates toward

FRko with increasing frequency. Therefore, the surface wave poles occur in the

order

ko < ... PTE3 < PTM2 < PTEI < PTMO < V'Eko (2.71)

2.4 Eigenvalue Formulation

The eigenvalue formulation is used here to analyze a uniform line. We

assume that the current on the line is of the form

J-(x,z) = J2 (x)exp(-j03.z) (2.72)

J,(x,z) = J,(x)exp(-j/32 z) (2.73)
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Im(p)

X X t ) Re(p)

TE, pole TM 0pole

Branch cut at p=k

Figure 2.2: Integration Path

We make use of a Galerkin method, that is we make the testing functions

identical to the expansion functions. Then we generate the determinant of the

coefficient matrix. This determinant is a function of /3. We determine /3 = 0,

such that the determinant is zero. This is equivalent to solving the nonlinear

equation for

[K ] [K,]=0.

This equation is solved using an interval halving technique. Once fl is known,

we determine the transverse dependance of the current from the eigenvectors.

The calculation of the characteristic impedance is not unique because the fun-

damental mode is not perfectly TEM. Two definitions are possible.

Z- P. (2.74)
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V 2

Zo (2.75)
Pz

where P, is the z-directed power flow, I, is the z-directed current flow, and

V is the potential between the strip and the ground plane. We use the first

definition because V is not unique. The z-directed current on the strip is given

by

w/2

f I J(x)dx. (2.76)
-W/2

The z-directed power flow is given by

Pz = Re [II(E(x,y) x H*(x,y)). dxay . (2.77)

The x-portion of the integration may be transformed into the spectral domain

through the use of Parseval's theorem.1
P =- Re x-a dy (2.78)

d oo
1 d oo

+2rRef f [(t12(Cy)Hf;y2(ay)-
0 -00

y)2 (a, Y)- 2(a, y)) da dy] (2.79)

where

E.I(a,y) = t°,(a)exp(--yy),

Eyl(a,y) = E°,(a)exp(--yy),
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H,.1(a,y) = Hl(a)exp(--Yiy),

fIl (a, Y) = Hl (a) exp(--/I Y),

t. 2 (a, Y) = E 2 (cx) sinh(y2 y),

A~ 2 (C, Y) =' E(a) cosh(yf2y),

fI.,2 = (a ) I, 2(a) cosh(-/2 y),

fiy2 (a, Y) =l H~(a) sinh(y2 y),

t.1=a -r(IP-)B, +qBh,

i(a)=()B

f.1()= qBe + (-)h

z1

Ex2(a) = r7A +2~

Ey2 (a) = Ae,

Y22
fo()= -qA, + r---Ah,

x2 i 2

fIO (a) = ()

r= -

p27

Pi jwfo,

Y2 = jWfofR,

=l jw/2,

i2 jW(A,
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A -C1 IJ ()P
1 Z, -

Ah -C 2 71 J,(a)p,

B. = D1 _-J (a)p,
Y2Z1

Bh = D2 -J,(a)p,

72C, - sinh(-y2d) + cosh(7t2d),
02 yl

C2 = sinh(71d) + -2-cosh(- 2 d),71 z2

D1 = exp(71d) sinh(- 2d)
C1

D2 = exp(7 1d) sinh(7 2d)

C 2

i.(a) = N .(a)- N.J.(a), and

i(a~) N.= .Ni(a)+ N. j.(a).

The y-integration is simple and may be done in closed form. Therefore, we

may write

P, -Re (Sj(a) + S 2 (a))da (2.80)

where

= ( ) (E%(Q)H,(a)(- E a)H,*((a)) exp(-2-fid), and (2.81)
I- = (1 "o " k

S2  [!][E2(a) gH 2 (a)sgn( '12)[I sinh(7 2d) cosh(y 2d) - d]
2 x72

-t 2 (a)g ())[ I-sinh(7 2 d) cosh( 7 2d) + d]]. (2.82)
Y2 x2 72

where sgn is 1 when 72 is real and -1 when 12 is imaginary. The a integration

is done numerically.
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2.5 Source Formulation

The source formulation is the crucial part of this method. The source

formulation affects the accuracy and efficiency of the method and the ease

of determining network parameters. Several source formulations have been

proposed. The one used here appears to have first been used by [17]. It was

later, perhaps iadependently, proposed by [15]. This method involves the use

of a traveling-wave formulation. First, a spectral domain eigenvalue method

is used to determine the propagation constant and current distribut on for a

uniform line. Then this information is used to derive the source function, wh;ch

consists of an incident current wave.

L

Jo'":'(xz) = 1aJ.I(x)exp(-j!3z) (2.83)

L
J "ource(xz) = 'bJ..J(x) exp(-j3z) (2.84)

1=1

The functions J., and J, are the Maxwellian basis functions which will be

discussed in the next chapter. They include the proper edge condition for

the longitudinal and transverse current at the edges of the microstrip. The

constants a,.. .aL , b... bL, and 3, the propagation constant, are determined

in the spectral domain eigenvalue analysis.

Although in scattering formalism the source is postulated as an in-

coming wave from z = -co, the source function is truncated at some point in

oider to facilitate the numerical integration of the inner products.3 We will now

3 it is not necessary that the source functions be truncated in rrder for the innner products
to exist. This will be discussed in Chapter 3.
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show why the integrals may be truncated while maintaining the correctness of

the formulation.

Consider the electric field generated by a traveling wave on an infinite

line. For simplicity, consider only longitudinal current on the line.

L

E Z(x - xo,z - zo) Z aiJ.I(xo)exp(-j,zo)dxodzo (2.S5)
rxo Zo 1=1

In the spectral domain this becomes

L

Ez(Q, 3) = Z2 (cr, fi) ai,(a)6(z). (2.86)

Therefore, after testing we have,

+00 +00

I J jea t (a, 0)Za 3jexpa (ae 1)dad/3 (2.87)
-000

+00

f J tes t (aO) 2 .(a, Oz)Jepa(,, 0, )dQ

-00

by the sifting theorem. In the eigenvalue formulation we determined 0 such

that

+00

I z (e( 2)zz(a, Oz) jzeP(a)da = 0. (2.88)
-00

So we see that a traveling wave on an infinite line automatically satisfies the

integral equation for the electric field. Likewise, a standing wave on an infinite

line satisfies the same conditions. It seems reasonable to assume that a traveling

wave on a finite line satisfies this condition far away from any discontinuities.

Therefore, if we consider an incident wave on a semi-infinite microstrip line

from -oo, the electric field is given by
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+2110

E, (x, d, z) f ]] Z..(x - xo, z - zo)J.(xo, zo) dxo dzo

+wo0

+ ] J Z.,(x - xo, z - zo)J--(xo, zo) dxO dzO

= 7 / Z(x - xo, z - zo)J.(xo, zo) dxo dzo

+ +w -ZL -xoz-z)(xzoddo

+ jjz'.(X - X0, Z zo)J(XO,zo)dxO dzO

iv 0

+ ] J Z,.,(x - xo, z - zo)J.,(xo, zo) dxo dzoad(.9

- 0v

+ ] f Z,,,(x - xo, z - zo) J-(xo, zo) dxo dzoad(.9

E.,~~ (x ,W)Lf -( - X0, Z - ZO)J (Xo, zo) dxO dzO

-i -00

+ f~ J Z- .(X - Xo, Z - zo)J.,(xo, zo) dxo dzo
+ ZL,

S00

+ ] J Z..(x - xo, z - zo)J.(xo, zo) dxO dzO. (90

If~~~ ~ I -ZLx the the inerl exedn fromJ o -co to zaoac eo
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Therefore, it is equivalent to define the Fourier transform of the travelling

wave current as

+00 0

J(, = J J J(x,z)exp(jax)exp(joz)dxdz. (2.91)
-00 -Z L

This analysis may be extended to the two-dimensional case simply by noting

that the uniform line current is the homogeneous solution. Therefore, it may

be added to the unknown current without affecting the problem.

The reflected wave and, in the case of a multiport, the transmitted

wave(s) may be treated in a similar manner. The point at which the functions

are truncated affects the rapidity of the convergence of the integrals. This will

be discussed in the next chapter.

The equation is tested in order to enforce the boundary condition,

Etan = 0 on the strip. The test region must extend far enough from the

discontinuity that scattered field is taken into account. However, it must not

extend too close to the point at which the uniform functions are truncated.



Chapter 3

DETAILS OF THE NUMERICAL COMPUTATION

This chapter deals with the details of the computation. Because full-

wave methods such as the one presented here are computationally intensive, it

is necessary to take advantage of all available numerical labor-saving devices.

Therefore, we will discuss the following aspects of the computation.

" The choice of expansion and testing functions;

* The use of symmetry properties in the reduction of the numerical inte-

gration;

" The use of symmetry properties in filling of the impedance matrix;

" The conditioning of the integrands through the extraction of the singu-

larities associated with the surface-wave poles;

" The truncation of the traveling wave functions for optimum convergence;

" The acceleration of convergence of the integrals through the extraction

of asymptotic forms;

" The details of the computational algorithm.

32
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3.1 Expansion and Testing Functions

The number of basis functions required may be minimized if basis

functions represent the current on the conductors as closely as possible. The

computational effort may thus be reduced significantly. The basis functions

should exhibit the proper edge singularities, boundary conditions, and sym-

metry. Since the computations are to be performed in the spectral domain,

it is desirable to be able to obtain the Fourier transforms in closed form.

Both entire domain and subsectional basis functions are used in this study.

Two-dimensional basis functions are expressed as separable products of a one

dimensional function of x and a one dimensional function of z.

JCZP"(x,z) = J wi(x)J 7(z) (3.1)
J.et(I, Z) - test test(32

J ) ()x)J (X ( (z) (3.2)

JeXP(xz) = -w,,ep,,(3.3)
JX Z (X:) ,X) JX(z) (3Z3

jteat (x,z) tXst "(es,) ,(z (3.4)

Therefore, the Fourier transforms are expressed as separable products of a and

'3.

4e (a, = i:a() Jea('q) (35)

jteat(C,, ) - te t (.)j t est,,,, (3.6)
~ epa 0) X t(,e.;pa(O)

J ea(a,3) = j: (.') J a() (3.7)

Jte. (as) J.O (a) t s (/) (3.8)
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J (x) J (x)
a a

, =I m=4 m=3

r=2 m-3M=1 m=2

x=-w/2 x=+W/2 x=-w/2 x=+w/2

Figure 3.1: The Maxwellian Functions

3.1.1 Analysis of Uniform Microstrip Line

In the one-dimensional analysis of uniform microstrip line, entire do-

main basis functions and Galerkin's method were used. The Maxwellian basis

functions were chosen to represent the transverse dependance of the current

on the uniform portions of the conductors. These functions exhibit the proper

symmetry and accurately include the effects of edge conditions.

_CoS(
2(m-1),-)Jzm.(z) - O((-)r

=. (X)" (3.9)

Jx,.,,(X) = sin(2i"')7._.W_, (3.10)

The one-dimensional Maxwellian basis functions are shown in Figure 3.1. This

choice has been shown [26] to give very accurate results with a minimal number
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of functions due to the variational formulation.

3.1.2 Analysis of Discontinuities

When analyzing discontinuities, two-dimensional basis functions in

which entire domain functions were used to describe the transverse depen-

dance of the current and subsectional basis functions were used to describe the

longitudinal dependance. The Maxwellian functions described above were used

for the transverse dependance. Several types of subdomain functions were used

for the longitudinal dependance. It was found that piecewise linear (overlap-

ping rooftop) functions allowed approximate satisfaction of all types of edge

conditions encountered. These functions are shown in Figure 3.2.

JPWL.(Z) (h- Iz- z,) (3.11)

Jz,,,(Xz) = (h - Iz- z,") cos( 2(m- L))(1
.Jxm"(XZ) = (3.12)

J ,,,,,(x~z) -- - lZ sin(2' )
--M(X -) h2 (3.13)

For example, the two-dimensional basis functions, J, 1 .(x, z) and J,,i, (x, z), are

shown in Figure 3.3 and Figure 3.4.

Travelling and standing waves were modelled by combining two two-

dimensional basis functions in which the Maxwellian functions were used for the

transverse dependance and sinusoidal functions for longitudinal dependance.

Co (2(m-1 rxr

Jzo,,(xz) = sin(Oz)S( ) ) (3.14)sin(132 z) 1 -
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J (z)

h A h
z Z z

Figure 3.2: Piecewise Linear Functions

Figure 3.3: The 2-dimensional Basis Function, J,1, (x, z)
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Figure 3.4: The 2-dimensional Basis Function, J.,,,(x, z)

J.i,(XsZ) = sin(a ,) (3.15)

) sin(zz)l - (-)2

For example, a positive travelling wave can be made up of two phase-shifted

sine/Maxwellian functions.

exp(jO3zz) = cos(I3,z) -jsin(,3,z) (3.16)

= sin(o8,z - -) - j sin(O2 z) (3.17)
2

The truncation of the sine function is detailed in section 3.5.

3.2 Symmetry Properties of the Green's Function

The spectral domain Green's function has the symmetry properties

given in Table 3.2. Because all of the expansion and testing functions used are
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Component Symmetry
Zz,(a, 9) even wrt a wrt
2.(a,"3) odd wrt a wrt 3
Z..(a,I) odd wrt a wrt /3
Z,,(a,/) even wrt a wrt

Table 3.1: Symmetry Properties of the Green's Function

purely real in the space domain, the real parts of their Fourier transforms are

even functions and the imaginary parts are odd. Because of these symmetry

properties, we can reduce the range of integration. The real parts of the Fourier

transforms of the basis functions are always even, and the imaginary parts are

always odd. Thus the integration reduces to

+00 +00

KZ(J,j)  j.t "*(a,/)Z..(a,/)J7 "(a,,3)dadg
-00-00

+00 +00

0 0
Jtest "expa

( Rep.I z(WCk)i R j-((a) 
/ teat re , ()]

+ Im [J( ),(a)] Im [ i.e(a)])

(R test (expa(p)

+ Im [J',s,(3)] Im [e(P,()]) dee d/, (3.18)
+00+00

+00+00

0 0
test pa

(Re [jt,))] Im [J~e ()]

teat Jexpa(a)]Re[J,()
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(Re [J ,(/O)] Im (

eat ~zpa
-Im. [JIPO(1)] Re [jxa/))dc do3, (3.19)

+00 +00

=~~ij J t J i jt ~(a /3j 2 a (3Xa, /) da do3
-0-00

+00+00

= f J Z~,(a,/
0 0

(Re [J.(ti (a)] Im [J(a),]
Im IJ tet, (a)] Re .r J(C)])

(Re [,]test(/3)] Im [jz'g)a(/3)]
Im[[tt,(l/] Re[Jex;a(/]) daedf, and (3.20)

-Im P-eOOlR

0 0

atet ~epa(Re [j<to.)(oe)] Re P: (o,/ )]
~tet ~xpa+ Im [V-(ewi(a)] Im[J(,j)]

(Re ~eOW l Re o .)
+ Im J( A Im [J(O).()] ) dad, d, (3.21)

3.3 Symmetry Properties of the Matrix

A large savings of computational effort can be obtained by taking

advantage of the symmetry properties of the matrix. In general, the portion of

the matrix generated with Galerkin's method applied to the identical shifted

subdomain expansion functions is Toeplitz or anti-Toeplitz. That is the matrix
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is of the form
T-2 T1 T2 T3

T-3 T-4 TI T 2

T-4 T-3 T- 2 T 1

This symmetry exists because the elements depend only on the difference of

centers of the testing and expansion functions. For example

+00+00

=z~ij J J2 zz(a, i3)

0 0

( Jte t t o e pa t
Vt z( Q z(cOJk (aQ)

J'(0io)cos (lztest - zep,) da do (3.22)
+00+00

0 0
tes t  a

Jz(,3)o(13)sifn (13(zt,t - zep.)) da d,3 (3.23)

+00+00

0 0

(Jt(a)t )J! (a)
J,(#)o(f3)s (/ 3 (zteat - zxp, ) )da d3 (3.24)

+0 +0

0 0

(j'(.)ik )J" x(a) z

j2. o;)o Zos .,l d (3.25)

Therefore, for K,, and K.., T.,, = T. (Toeplitz). For K,, and K., T-, = -T"

(Anti-Toeplitz). In general, portions of the matrix which are not Toeplitz are

still symmetric about the principle diagonal due to reciprocity. Furthermore,

the zx and xz matrices are identical due to reciprocity.
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3.4 Surface Wave Poles

As was pointed out in Chapter 2, the spectral domain Green's function

has poles corresponding to TM and TE surface waves. These poles are the

solution to the nonlinear equations

ERY1 + -Y2 tanh(y12d) = 0, and (3.26)

-y 1 + -f2 coth(-' 2d) = 0. (3.27)

These equations are solved using an interval-halving routine. The location of

the surface-wave poles must be known accurately. It has been found that the

location of the poles must be known to 7 significant digits [16]. This accuracy

is easily obtained, however, using the interval-halving method.

3.4.1 Extraction of Surface Wave Poles

As pointed out in Chapter 2, surface wave pole(s) can occur in the

integrands. It is possible to evaluate the integrals as given in Chapter 2. In

this case, 8 should be on the order of .01k 0 . However, evaluating the integral

in the neighborhood of these poles is very difficult. Therefore, it is desirable

to develop a technique by which these poles may be extracted leaving a well-

behaved integrand. This may be done by taking the -1 term of a Laurent series

for the integrand about the surface wave pole. Also, as pointed out in Chapter

2, all of the surface wave poles occur in the range k < p < ERk. Therefore we

may write

oo27 N(0,p) f k2 1_
Ipd I Dj D(p)

0 0O00
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+ JfRk - N (9,p) _RTMO(PTMO) dp dO
0JI (D(p) P -PTMO

+ I7f7(', ) dpd9 (3.28)
eRk 0 Dp

ko 21r

= JJ est* (, 0)Z2..(p, 0) jx"(p, 9) dcx do3
0 0

+ T O 2 eat* (P, ) Z~ (p, ) jCX~pa(p, ) _ RTM z, c f

+ f J\i ti P - PTMO ad

(j test* (p 9)2Z-.(p, 9)zep 9p ) -RTMzz)& i

00 2r

+ J J Jteat* (P, 9)Z2 (p, 9)jexpa(p, 9) dcx d/3

+ (In -v/f-ko PTMO) - 7r) RTMzz (3.29)

ko 2w7

Kzx(i,j) = JJeat*( )z. (p, ) jexpa (p, 9) dcx do
0 0

PTMO 46 27rRMZ

+ J Jeat*(J 9)zx(p, O)jexpa(p 9) dcx(1

PTo+ 0 P - PTMO)

00 27r
+ J J J

t
C~

t
*(p 9z.(p, 9)jex-pa(p 9 c /

/c\ kRo 0

+ (In VI~k -- TO i T (3.30)
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=x~ij Jj-tt(p 9 (p, 9) jezpa(p, 9) dcrdol
0 0

" ITO- I7 ( at
* (p, 9)Z2..(p, 9) j.e7pa(P, 9) - RTx dce do

k0  0 - 6 PTMO/
v'ko 20

+ c,-k j 7 J(Jest* (p, 9 0)2..(p, 9) Je!xpa (p,90) _RTMXZdx d
PTMO+S 6 x J TO

00 21r

+ J J iet6st*(P, 9)2..(P,90)j;;pa(p, 9) da d
+ I V le k - TMO M -r RTMxz (3.31)

0 0

PTMf-62te t*(9.I(P9)Jepa(p, 9) _)Tx dcx do+ ] Jl (j" p, ) P - PTMO I
ko 0

+ '-k 0  21r at (n ) ' .(p, 9s) ex (p, 9) - RTMTx dcx d!3
I \J I Ii- P -PTMO,

pTMO+, 6 0

0o 27r
+at JJJCt (p, 9)Z2..(p, 0) jexpa (p 9) dcx d/3

+ (In ( v/,,-ko -pTmo) -i~r) RTWZxx (3.32)

where

21r

RTz=fj J P O)2.zTM(P p,) O(,)d9
0

RTz=f;i J ,0) .MP,)je~pa(p,9)d9

0
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0
21r

RTMxx J jt5i*(, 0)2.XXTM(P, 9)jexpa(p 0) dO.
0

(3.33)

3.5 Extraction of asymptotic forms

The second difficulty encountered in the evaluation of the integrals is

the evaluation of the asymptotic portion of the integral. The integrand decays

slowly, as will be shown, and therefore the integration must be carried out

to a very large value. This, too, is numerically expensive. Therefore, it is

desirable to extract the asymptotic portion of the integrand and integrate it

analytically. However, this has only been satisfactorily implemented for the

one-dimensional case. An alternative method has been implemented for the

two-dimensional case.

3.5.1 One-dimensional case

In the calculation of the propagation constant and the current distri-

bution for the modes of a uniform line, it is possible to obtain an asymptotic

form of the integrand, which may be integrated in closed form. We now exam-

ine the asymptotic form of the Green's function for large a and 3. For large

values of a, Equations 2.37-2.50 become

1 a, (3.34)

Y2 Ca, (3.35)
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YTMI a (3.36)

i'TM2 e jw~oER (3.37)

YTE1 a (3.38)

kTEI a (3.39)

JWE'
e -- , (3.40)a

~jwyoe (3.41)

y1h ~ (3.42)JwA

2 -- (3.43)
2 ~a (3.44)

jWCo(1 + ER)'
2 h  Jw (3.45)

2a'

N2  -, and (3.46)
I, ~ . (3.47)

Therefore, for large values of a, the spectral domain Green's function

components behave as follows.

/32 __ P - asympza 1 +R - 222,, (3.48)

NW+~ +W~ -R 2a~ma jwA(1 + R) 2a (3.49)/3 a w )=2, ,,,(.9

( o 2-+ jwIS) = 2a8,m, and (3.50)a jWCo(1 + CR) 2a
a 0 2 W I _ a a m ( 3 .5 1 )

jwfo(1 + ER) 2a 3
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So the Green's function behaves asymptotically as

-- 0(1), (3.52)

0(1), (3.53)

0(1), and (3.54)

O(a). (3.55)

Therefore, in order to ensure the convergance of the integrals, the

basis functions used to represent i4 must behave asymptotically as , and

the basis function used to represent J. must behave asymptotically as -- , if

Galerkin's method is used.

The Fourier transforms of the Maxwellian basis functions are given

by

Y='( - T Jo(I "+ (M - 1)7r)
Jz(a) 2 r [~t Qlj

+ Jo(I -(m- 1)rl), and (3.56)
2

4(- [J(I + m7r ) - Jo(IT -mrrl)] (3.57)

where Jo(x) denotes the zeroth-order Bessel function. This function is evalu-

ated numerically using a rational function approximation. From the asymptotic

form of Jo [24], it can be seen that the asymptotic forms for the Maxwellian

functions are

4-1 1 a.
J,,, (a) - 7 sin (- = , , and (3.58)

2 rnir si/wa _)+\",,

m(a) - - sin -') (.)+' = js7JrnP(a). (3.59)
v'W/ a \2" w2
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Therefore, the Fourier transforms of the Maxwellian functions behave asymp-

totically as

J;m(a) ( , and (3.60)

The integrands then decay as -L. This is a fairly slow convergance. Without

any acceleration technique, the integrals must be carried out to a large value

of a as much as 1000k0 . However, since the asymptotic forms of the basis

functions and Green's function are relatively simple, it is possible to evaluate

the asymptotic portion of the integral analytically.

J.,:YMP(a)Zaa!I m(a)JaYmP(a) da = ((_l)m+n2

a

,_( R) (1) (1 -+ a sin(aw) - wCi(aw) (3.62)

jJQf mP-,, , mP.- ), , mP.-,, ,- ((_ 1) )
(WO( + IER)) ( ) G+ lsin(aw) -wCi(aw)) (3.63)

jjaa/ m(a)Zsym (a)Jans/P(ci) da =

a

(WIEO(1 + R)) (8n ) (1 + 1-sin(aw) - wCi(aw)) (3.64)

Jaa 'mP(a)Z 3YP== (a)JaY(a) da = ((_)m+n+2)

a

( 1 ) (8m)'(1 + 1 i aw - ia ) ( .4

1W8o( 1 + 1 WR)-sin(aw) - wCi(aw) (3.65)
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where

cos~t) dt. (3.66)

The cosine integral may be efficiently and accurately approximated with a

rational function [231. So the integrals are evaluated as

00 a

J (a) (da)z(a) dcx I J J(ax)2, (a) j,(a) dcx
0 0

00

a
jarymp (C)asyrnp (asrnpJ:~ z (aZ, a", (a)] da

+ (1)m+n-2 2( R) - 8) (

+ -sin(aw) - wCi(aw), (3.67)
(a

00 aIJz J(ax)2...(ce) J.(ce) dx I Jz J(ax)2,.,(ce) J.,(a) dcx

a
jasymp(C) ZTay m p(cx)jasymp(C.)] dC(

+ (1)m+n( (o )) (8n)

(l+ lsin(aw) - wCi(aw)), (3.68)
ao a

00 aI J (a)Z(ct)J(a) dx J. (a )Z (.)(, (a) dd

a
- jGsly-P(cx)ZQa-l mP(cx)jS" m P(ce)] dcx

+ (_l)m+ n( I 8m)n(E1 + ER)' W2i-
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+ -sin(aw) - wCi(aw) , and (3.69)
(a

00 a

- ja ay-P(a)2aa'Y-P(a))j:aavrP(a)] da

+ (-1)m+n+2 ( Wo(f+R)) ( n)

(+ 1 sin(aw) - wCi(aw)) "  (3.70)

3.5.2 Two-dimensional case

In Section 3.1.2, it was seen that the longitudinal dependance of the

current is represented by two types of basis functions, piecewise linear and

sinusoidal. The piecewise linear function is repeated here for convenience.

JPWL(Z) = (h - Iz- znl)

The Fourier transform of the piecewise linear function is
2 1

JPWLn(P3) = 7- (1 - cos(gh)) exp(jfz,).

As can be seen, the transforms behave asymptotically for large 3 as

]PWL,(O3) 1 (T- (3.71)

As noted, the sinusoidal basis functions are truncated. The length of the sinu-

soid, as pointed out by [15] should be an integer number of half-wavelengths

in order to obtain the fastest convergence of the integrals. This can be seen as

follows.
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Let

J~i. (Z sin(13~z) if 0 < z < zL, and (.2
J3~() j0 otherwise. (.2

Then

20+0.

1 + , cos((13 + 03)z)

+ 1 - cos((O - Oz)zt)
213- Oz~

1 1 sin((13 + 13)z)
10_0_

+ 1 - sin((13 - 03.)zt). (3.73)
213 - O3z

For zt = ft

2'

213 + O3,

1 1-cos(3zt)
21 + 13

2+ 1 -13cos(13zi)

1 Oz-sin(zt)

2 1-13sin(13zt). (3.74)

For large values of 13,

Oz(1 + cos(13zt) + sin(13zt)). (3.75)
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Therefore,

iJam ~ (-) (3.76)

On the other hand, if the sine function were truncated at an odd integer number

of quarter-wavelengths, F,,(i3) would decay as - for large 3. It is desirable to

truncate the sine function at an integer number of half-wavelengths not only

because this speeds convergence, but also because the subsectional and entire

domain basis functions will then decay at the same rate. As it stands, Jin(3)

can have a pole at f = 03,. However, by further constraining the truncation to

an even integer number of half guide wavelengths, we can eliminate the pole.

Let

ZL = nAeff. (3.77)

Then

cos(O3 ZL) = 1, and

sin(3 ZL) = 0. (3.78)

Therefore,

lim Jin(O) = 0 (3.79)

As noted in Chapter 2, the traveling-wave function does not have to

be truncated at all in order for its Fourier transform to exist. That is

( e- j ' z if z < 0, and
Jao,,,.ce(z) = 0 otherwise. (3.80)
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The Fourier transform is then derived as follows.

0

ilource() = J e-j'zej'z dz
-00

0

I ej (O- ', )z dz
-00

o 0

I cosfj3 - 0-.)z dz + j I sin(3 - 0,z)z dz
-00 -00

2 J00 e(OO-)z dz + j J sin(O - 0,,)z dz2
-00 -00

1 e(+_00 )z dz + j lim e az sin(i3 - O3)z dz
00 -00

Therefore,

jlource(i3) = [27rb(f - 0)2

+j [i a+(_l)2 (asin([O - Oz]z) - (0 - Oz) cos([3- 0,]z))]

ource(/3) = irb(O - )1+ (3.81)

It is immediately seen that this function presents two numerical problems.

First, it has a pole at / = 3,. Also, it behaves asymptotically as 1. Therefore,

it is numerically more expensive to evaluate than the source function used

here. However, it should be noted that it is more rigorously correct and may

be necessary when surface wave coupling is strong or complex circuit geometries

generate strong coupling.

For large values of 3, the spectral domain Green's function compo-
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nents behave as follows.

_____ ckJwl/(382
2 jwEO(1 + CR) 2a 3  (3.82)

.- jW0(1 + ER) (3.83)
/a jw 0(l + ER)

2.3 ~ + (WR) and (3.84)
O2

-2 jWY/ (3.85)
OjWCO(1 + CR) 2/3

So the Green's function behaves asymptotically as

-zz o(0), (3.86)

2. 0(1), (3.87)

2. 0(1), and (3.88)

(3.89)

From the asymptotic forms of the Green's function for large/3 and the asymp-

totic forms of the basis functions, we see that the two-dimensional Z,, integrals

converge as -L, the Z, and Z.. integrals converge as -L, and the Z. integrals

converge as - along the /3 axis.

In the two-dimensional case, the extraction of the asymptotic form is

not straightforward. Because the transverse dependence of the two-dimensional

basis functions is the same as that of the one-dimensional basis functions used in

the analysis of uniform line, the convergence along the a axis is the same as that

for the one dimensional analysis. Along the / axis, the convergence is better

because the basis functions exhibit more rapid convergence. The integration

is performed in a cylindrical coordinate system, and while an asymptotic form
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is available for the Green's function for large p, no such forms are available

for the basis functions. This is because they are separable in a and 6. The

asymptotic form of the Green's function for large pl is given by

Zz (p,O) = P cos 2(0) jwy sin 2(0) (390)jwCo(1 + CR) 2p

_ 
2  jwpa 2

jwo(1 + ER)P -2 (3.91)

2.x(p, ) - cos(0) sin(0) _ jw cos(O) sin(O) (3.92)
jwO(1 + CR)P 2P3  (

cos(0) sin(0) jwLu cos(O) sin(O) and (3.93)
2Z~(p,O) = jwLo(1 + CR)P an2Pd 3

(pO) = psin2 (0) - jwcos2 (O) (3.94)
jWCO(1 + CR) 2p

For a conductor backed homogeneous medium of relative dielectric

constant e, the space domain Green's function is given in closed form by

Z,,(x - xo, z - zo) =

-j (Ek2 + 2 [exp(-jkR) exp(-jkR) (395)
7_(,E o + 5z 2  f"- R ' .

Z=,(x - xo, z - zo) =
S(Eek2 + 92~ exp(-jkR3 ) exp(-jkRi) (3.96)

47foC 0 3  j- R.9 Ri

z(x - xo, z - zo) =
k2_+ 92 exp(-jkR) exp(-jkRi)-J (Eeko + -)[ , and (3.97)

4 7rwCOR 0 X R, Ri

'The asymptotic form for 2., in [36] appears to be incorrect.
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Z.-(x - xo, z - zo) =
__ 2 +_2 ),exp(-jkR.) exp(-jkR )

ex(p(k +_L [ (3.98)
4-rWOC qX2 R. R,

where

RS = /(z - zo) 2 + (X - Xo) 2 , and (3.99)

Ri = V( - z0 )2 + (x - xo) 2 + (2d) 2 . (3.100)

Using the identity given on page 179 of [25] and the differentiation theorem for

Fourier transforms, the spectral domain form of this Green's function is given

by

2Z(a,3) - ( ek 2° -3 2)( 1 - exp(-27y2d)), (3.101)

Z(a, ) = ( -k -/ 3 a)(I - exp(-2-y2 d)), (3.102)

2jwfoeey2

2,,( - __)=( __-__) ( - exp(- 272 d)), and (3.103)

Z., ( k o - # 2 ) (1 - exp(-2- 2d)). (3.104)
2jwL,7,2

This behaves asymptotically for large p as

2 2jwEo eP' (3.105)

Z(,/)= kog _ 3 (3.106)

2 a/)= 2p 2jwEoEeP'an(30)Z. ,0(a,,3) = .
° e[ ., and (3.103)

2 p 2JwoEp

2 ( , kO -) (1 2- 2jw oxp "- -~ (3.104)

TLerefore, if we let fo = the asymptotic forms become

2 #

=_2 j_,_ (3.106)=2p,-jwo(1 + E), 2 310)
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3Oa jwP (3.110)2Z (a,l3) = jwO(1 + ER)P 2p (

a/3 jw#, and (3.111I)
Z(r,/3) = jwEO(1 + CR)P 2p

2 LOA3jw( 112)
=0 jw0( + ER)P 2p

It can be seen that the TM term of the asymptotic form for the homogeneous

case is identical to that of the grounded dielectric slab. Therefore, this aymp-

totic form may be subtracted from the spectral domain Green's function to

yield a more rapidly converging kernel. Although the additive term may not

be evaluated analytically as in the one-dimensional case, it may be evaluated in

the space domain. This requires the computation of a four-dimensional finite

integral. When simple basis functions are used, this four-dimensional integral

may be further reduced to two-dimensions because two of the integrations may

be performed analytically. However, the use of the Maxwellian functions allows

only one of the integrations to be done analytically. Because the integration

is in the space domain, a singularity exists at the source point. In order to

perform the integration efficiently, this singularity must be extracted and inte-

grated analytically.

00 2 St *(p, O)Z-.(p, O)JxP"(p, O)p dp dO =
0 0

J , 2t(P, 0) [ (Pz(o,) - zh(P, )] j C'(pO)pdpdO +

0 0

f f I I ;:zest ( X Z)Zh (X _ X, Z _ ZO)j,,pa(X, z)dxo dzo dx dz(3.11 3)
Z Z XO zo

Because the space domain integration is still somewhat laborious, it nas been

found that this method did not reduce the computation time significantly.
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3.6 Numerical Evaluation of the Integrals

Because the the range of integration is the same for all the integrals,

it is advantageous to precompute and store the components of the Green's

function and the expansion and testing functions. Thus the Green's function

is computed only once for each integration step for the entire matrix. This has

been noted by [2]. Some savings is realized in the computation of the basis

functions due the eliminated redundancy. This is particularly suited to vector

processors because the computation of the integrals may be vectorized.



Chapter 4

THE OPEN-CIRCUIT MICROSTRIP
DISCONTINUITY

4.1 Introduction

Microstrip open-end discontinuities are an integral part of most mi-

crostrip circuits and antennas. The geometry of a microstrip open-end discon-

tinuity is shown in Figure 4.1. Open-end discontinuities in open microstrip are

imperfect open-circuits because of energy storage in non-radiating fields and

energy leakage into radiating fields. Energy leakage into both space waves and

surface waves occurs. The discontinuity exhibits a minimum susceptance immi-

tance function. Therefore, an appropriate circuit model is a parallel combina-

tion of a reactance and a conductance as shown in Figure 4.2. In general, both

the reactance and the conductance are frequency dependent. In this chapter,

microstrip open-end discontinuities in open environments are analyzed using a

combination of the the deterministic and eigenvalue formulations of the spec-

tral domain approach presented in Chapters 2 and 3. The study includes the

effects of both longitudinal and transverse currents and incorporates the proper

edge conditions for each component of the current at the edges of the strip and

the open end of the strip.

58
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microstrip

N /substrate

groundplane

Figure 4.1: Geometry of Microstrip Open-End Discontinuity

uniform line

(Z G C
S0

II

z=O

Figure 4.2: Equivalent Circuit of Microstrip Open-End Discontinuity
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4.2 Method

The computational method consists of two parts. In the first part,

the spectral domain eigenvalue formulation is used to compute the propagation

constant, characteristic impedance, and longitudinal and transverse current

distributions for the fundamental mode on an infinitely long open microstrip

corresponding to the uniform region. The source current to be used in the

second part of the method is then given by

L
J.o"rce(xz) = _aiJ,,(x)exp(-jz), and (4.1)

1=1

L
Jource(x,z) = Z bJx(x)exp(-'Ozz). (4.2)

1=1

The functions Jm and J.. are the Maxwellian basis functions described in

Chapter 3 They include the proper edge condition for the longitudinal and

transverse current at the edges of the microstrip. The constants a, ... aL

b,... bL, and 0, the propagation constant, are determined in the spectral do-

main analysis. In practice, L = 2 yielded good results and was therefore used

throughout the analysis. The propagation constant for the fundamental mode,

0,, is always greater than the value of p for any surface-wave pole. Therefore,

the fundamental mode is always slow compared with any surface wave mode

and thus does not radiate any power into surface-waves. In the second part of

the method, the microstrip is divided into two overlapping regions: a uniform

region far away from the open end and a perturbed region near the open end,

as in [15]. In the uniform region, the current is assumed to consist of only the

fundamental mode. This will be true if the higher order modes are either leaky

or evanescent. The current in the uniform region is represented by the source
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function and a reflected wave with an unknown amplitude, IF.

L
Junf°"(xz) = ,a,Jz,(x)(exp(-jzz) - Fexp(+jzz)), and (4.3)

l=1

L
Ju.fotm(x ,z) = _b.,(x)(exp(-jO, z) + F exp(+jlzz)). (4.4)

1=1

Note that F is the voltage reflection coefficient. As discussed in Chapter 3,

the exponential functions are split into sine and cosine functions which are

truncated to give the most rapidly converging Fourier transforms.

The longitudinal dependence of the current in the perturbed region

near the open end is augmented with piecewise linear (rooftop) subsectional

basis functions, which are defined in Chapter 3. The piecewise linear func-

tions allow a reasonable approximation to the edge condition for the both the

transverse and the longitudinal currents at the open end. The transverse de-

pendance of the current in the perturbed region is represented with Maxwellian

basis functions with variable coefficients. This takes into account mode con-

version in the perturbed region. Therefore, the current in the perturbed region

is given by

M N
J"erturbed (xz) = E J,,(X) E CmnFn(z) + Jnform(x, z), and

m=1 n=l

M N
g rtre(x, z) = Z J.m(x) L dmnFn(Z) + Jform(x z).

M=l n=1

where FI(z)... F,,(z) are piecewise linear subsectional basis functions. The

positioning of the basis functions is shown in Figure 4.3.

If just the longitudinal current, J,, is taken into account and mode

conversion is neglected (M = 1), as it was in [15], there are N + 1 unknowns,
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shifted sinusoid

unshifted sinusoid piecewise linear functions\ / /

perturbed

uniform region region

Z.-Z z=O

Figure 4.3: Positioning of Longitudinal Basis Functions for Analysis of Mi-
crostrip Open-end Discontinuity
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the complex coefficients of the subdomain expansion functions and the complex

reflection coefficient. Since it is not possible to test the equation with the source

function, Galerkin's method cannot be used here. However, it is still useful

to use the M subsectional basis functions as testing functions in a "nearly

Galerkin" method. This generates an underdetermined linear system with one

less equation than unknowns. One method of solving the problem is to simply

use one more testing function to generate one more equation. The linear system

is then square and may be solved using Gaussian elimination. This method was

proposed by [15]. Thus, the following linear system is derived.

g r , p ,- .. ,-Z~~Pp ] ,,,ZP - aS [ +

Kjz.z'P KzP ... K z zzP_ a, I ___+
1,2 " i ,N z 1  a1

~ ~ ... K-4 J a

gzzPP [zzpp T zz PP zzp-
2,1 2,2 • t2Na 2 a .S zp

KzzPP rKzzPP Kzzpp .-z p _  zzp+
N91  KJN,2  ... N,N KzfN  aN --L- N[ KzzPP KzzPP K zzPP V [zzp- aNI Szzp+

L N-t'l1 N+1,2 .. ""JN+1, N tL aN+1  L L N+1

The portion of the matrix generated by testing and expanding with subdomain

expansion functions has Toeplitz symmetry. Therefore, only one row of ele-

ments needs to be calculated. To generate the entire linear system, 4N + 2

integrals must be computed.

When two dimensional current is considered, the linear system be-

comes [[Kzz] [Kzx] ir[a] 1 _ S2][K..], [K..] [b] [S-1

where K,, denotes the coefficient matrix given above and KZ, etc. are similar.

By reciprocity, K., = K,. We note that aN+1 = -1 and bN+l = F. Therefore,

the system of equations given above is over-determined by one equation. The

overdetermined system was solved using a least-squares approach. The numer-
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ical cost of including the effects of two-dimensional current are substantial; we

must evaluate 11N + 5 two-dimensional integrals.

One drawback to this method is that there are several unknown quan-

tities which must be determined empirically: the length of the uniform line basis

functions, z, the length of the region of subdomain expansion, and the length

of the subdomain expansion functions. It has been empirically determined

that using z = 6Ajir yields satisfactory results. Also, it has been found that

using subdomain expansion functions of width, 2h = L yields satisfactory16

results. However, the length of the subdomain expansion region, and hence

the number of subdomain expansion functions, depends on the geometry of the

discontinuity.

Some of this uncertainty may be removed by generating an overde-

termined system by using more subsectional testing functions to generate more

equations. The over determined system is solved via a least squares method. F

is the complex reflection coefficient for the fundamental mode. From a, ... a

and F, the current over the entire strip can be determined. From F, the reflec-

tion coefficient, and Z 0, the characteristic impedance of the uniform line, an

equivalent admittance can be calculated

Yequiij = Yo Fi~ (4.5)
1-F

where Yo = zo"

4.3 Numerical Results

In Figures 4.4 and 4.5, the longitudinal (z-directed) current and the

transverse (x-directed) current on an open circuited microstrip line are plotted
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I

Figure 4.4: Magnitude of z-directed Current on Microstrip Open-end Discon-
tinuity

to show the edge conditions for a typical case. The characteristics are as follows:

" Relative dielectric constant, CR : 12.8

* Substrate height, h = .300 mm

" Strip width, w = .600 mm

" Frequency = 4.00 GHz

It can be seen that the piecewise linear functions allow the edge conditions at

the open end for both the transverse current and the longitudinal current to
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I edge

Figure 4.5: Magnitude of x-directed Current on Microstrip Open-end Discon-
tinuity
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Figure 4.6: Effective Dielectric Constant of Uniform Microstrip Line

be accurately modeled.

In order to allow comparison with previously publishcd experimental

data, [49] an analysis was made of an open-end discontinuity in microstrip line

with the following parameters.

* Relative dielectric constant, CR : 9.9

" Substrate height, h = .635 mm

e Strip width, w = .600 mm

The dispersion curve for eel! is shown in Figure 4.6. In Figure 4.7, the char-

acteristic impedance is plotted as a function of frequency. Figurcs 4.8 and 41.9,

show the magnitude and phase of the reflection coefficent for an open circuit
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Figure 4.7: Characteristic Impedance of Uniform Microstrip Line

discontinuity. In Figures 4.10 and 4.11 G and B are plotted as functions of

frequency. This line is very narrow electrically; at 20 GHz the line is still

only 0.04 free-space wavelengths wide. The phase agrees reasonably well with

the measured data in [49] (the magnitude was not presented in [49]) and with

calculated data in [181 and [44].

In order to quantify the effect of the transverse current on the reflec-

tion coefficient of a microstrip open-end discontinuity, an analysis was made of

an open-end discontinuity in microstrip line with the following parameters.

0 Relative dielectric constant, cq : 9.6

a Substrate height, h = .635 mm

* Strip widths, w = .600 mm and w = 1.20 mm.
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Figure 4.12: Effective Dielectric Constant of Uniform Microstrip Line

The narrow line is very similar to that in the above analysis. It was chosen

because it is a very commonly used design. The dispersion curves for eiff

are shown in Figure 4.12. In Figure 4.13, the characteristic impedances are

plotted as a function of frequency. As can be seen, the narrow line exhibits a

characteristic impedance which varies from approximately 50 ohms at 10 GHz

to 70 ohms at 40 GHz. The characteristic impedance of the wide line varies

from approximately 35 ohms to 45 ohms over the same range. In Figure 4.14,

the ratio of the transverse to longitudinal current is plotted. It can be seen that

the transverse current on the narrow line is not very significant in comparison

to the longitudinal current. However, the transverse current on the wide line

can be quite appreciable. In Figure 4.15 at,d Figure 4.16 the magnitude and

the phase of the reflection coefficient of the open-end discontinuity are plotted.
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Figure 4.15: Magnitude of Reflection Coefficient of Microstrip Open-End Dis-
continuity Z =- .945

It can be seen that the inclusion of the transverse current in the analysis mainly

affects the phase of the reflection coefficient. It can also be seen that the effect

of the transverse current is a decrease in the phase of the reflection coefficient.

This seems resonable because the transverse current tends to store magnetic

energy. The longitudinal current stores mainly electric energy. Thus the effect

of the transverse current can cancel the effect of the longitudinal current to

some extent.

In order to further compare this analysis with previous numerical

work, and analysis was made of an open-end discontinuity in microstrip line

of width .Ao on a substrate with a relative dielectric constant of 12.S. The

magnitude of the reflection coefficient of the open-circuited microstrip line is
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shown in Figure 4.19. In the same figure, the magnitude of the reflection

coefficient is shown calculated including only longitudinal current on the strip

as was done in [151. This data agiees well with that presented in [151. It can

be seen that for narrow lines such as this one, the inclusion of the transverse

current makes little difference in the magnitude of the reflection coefficient for

small values of -. However, near the cutoff of the first TE surface wave, it is

seen that the magnitude of the reflection coefficient displays a more pronounced

trough and peak. This seems reasonable because the inclusion of the energy

stored in the transverse current could increase the frequency sensitivity of the

reflection coefficient.
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Also in Figure 4.19, the magnitude of the reflection coefficient for

an open-circuited microstrip line of width .15A0 on a substrate with a relative

dielectric constant of 12.8 is shown. It can be seen that the wider line has a

more pronounced resonance at the cuton of the first TE surface wave mode.

4.4 Conclusions

Microstrip open-circuit terminations have been analyzed using a de-

terministic spectral domain method. The radiation loss from the open-end

discontinuity can be significant when the substrate is electrically thick. It has

been shown that the the transverse current in the microstrip has little effect

on the reflection coefficient as long as the line is narrow and the substrate is

electrically thin. However, the effects of the transverse current are more pro-

nounced for wider lines and thicker substrates. The effect is most noticeable

near the cutoff frequencies of the TE, surface-wave mode.



Chapter 5

THE SHORT-CIRCUIT SLOTLINE
DISCONTINUITY

5.1 Introduction

The slotline short-circuit discontinuity is the simplest slotline discon-

tinuity. The geometry of the slot line short-circuit is shown in Figure 5.1. Like

the open-circuit discontinuity in microstrip, the short-circuit slotline disconti-

nuity is non-ideal because of energy storage near the discontinuity and energy

loss from radiation into surface and space waves. The slotline short-circuit

discontinuity exhibits a minimum reactance immitance function. Therefore, an

appropriate equivalent circuit for a short-circuit slotline discontinuity is the se-

ries combination of a resistance and an inductance both of which are in general

frequency dependent as shown in Figure 5.2.

In this chapter, slotline short-circuit discontinuities in open environ-

ments are analyzed using an extension of the method presented in Chapters

2,3, and 4. This study includes the effects of both longitudinal and transverse

electric slot fields and incorporates the proper edge conditions for each com-

ponent of the field at the edges of the slot and the short-circuited end of the

slot.

Although the microstrip open-circuit and the slotline short-circuit

are similar in that both radiate power into space waves and surface waves, the

80
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substrate

Figure 5.1: The Slotline Short-Circuit Discontinuity

L

uniform line
(,,z0) R

Z=O

Figure 5.2: Equivalent Circuit of Slotline Short-Circuit Discontinuity
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excitation mechanisms are different and therefore, the radiation characteristics

are different. In this chapter we compare the non-ideal aspects of open-circuit

microstrip and short-circuit slotline discontinuities.

5.2 Method

In principle, the method of analysis described in Chapters 2 and 3 may

be used to model slotline discontinuities. However, because the current exists

over semi-infinite planes, the representation of the unknown current with basis

functions would be difficult and inefficient. Therefore, an alternative approach

is used. Consider the spectral domain equations defining the Green's function.

E.(a, 0)= Z..(a, 0)i 2 (a, 0) + Z..(a, .)h(a,) (5.1)

k (a, #)= 2. (C, 0)J4(Q, )+ a(, )C)f(, /) (5.2)

This expression can be inverted to give

.J (a, 0) Y..(a, .)E(a, 0) + Y.=(a, E )(c, a) (5.3)

4(a, /) = Y (a, ) (a, /) + Y(a, 0)Ed(, ). (5.4)

Because the slotline has no ground plane, the Green's function is slightly dif-

ferent from that used for microstrip line. The Green's function is derived in

Appendix 2 and is given by

= -2 N2 , (5.5)

S= _N2 N :(Y _ -h), (5.6)

N = N2 N:(Y - y.h) and, (5.7)

1 (5.8)
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where

( YTM2 YTM2 + YTMI hh( 2̂ d) a
\YTM + TM 2 coth(y2d) ,and (5.9)

= YTE2 (YTE2 + YTEI coth(y2d)) (5.10)= ITE + =2coth( fd))

Like the Green's function used in the analysis of microstrip, this Green's func-

tion has poles corresponding to surface waves in the dielectric. These surface

waves correspond to those in a grounded dielectric slab just as those generated

by microstrip discontinuities. Therefore, the pole locations are the same as

those for the grounded slab. However, the residues at the poles are different

because the surface wave excitation mechanism is different. The residue cal-

culation is the same as that given in Chapter 2 except zzzTM ... ZxZTAf are

replaced by

Y ,TM = -N.:M, (3.11)

YrzTM = -NrNzy'M (5.12)

flZ.TM = -NN ,YM and, (5.13)

Y TM = -N;YM, (5.14)

where

=TM2 + fITM1 coth(Y2d)
ITM - (TM 2  + ap)

2-~eP) , and
ap

apN
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For TE modes the residue is given by

='xTE - YE, (5.15)

k .TE = +N.NzY T (5.16)

YzTE = +NNzYTE and, (5.17)

1zzTE = -N Y E, (5.18)

where

- (TE2 + TE, coth(-t2 d)
TE kTE2 kh aih

ap a

-- (( P ) ' - TM 2 d&2(cth 2( -td) 1)) , and

2 (- ) (igh(P' + YTEMd-y2(cc'th2(-yd) - 1))
ap 2

With this formulation of the Green's function, we can expand the slot electric

field in terms of known expansion functions in the same way the strip current

was expanded for microstrip. We can make use of the same expansion and

testing functions as used in the analysis of microstrip except that the functions

used to model the transverse dependance of the current are reversed.

COS(2(rn-i)rz)

Ex (X) = (5.19)

E (z) = sin(2"" )
E.mX - n (5.20)

The functions Em and E,, include the proper edge condition for the longitudi-

nal and transverse field at the edge- of the slot. The spectral domain eigenvalue

approach described in Chapter 2 is used to compute the propagation constant
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and the transverse and longitudinal electric slot field components for the fun-

damental mode on an infinitely long open slotline. For the fundamental mode,

the propagation constant, 3_ is always greater than any the value p of any

surface-wave pole. Therefore, the fundamental mode on slotline is always slow

compared to any surface-wave mode and thus does not radiate into surface-

wave modes. Once the fields for the fundamental mode on uniform slotline

are determined, the slotline is divided into two regions, a uniform region far

from the shorted end and a perturbed region near the shorted end as in [15].

In the uniform region the slot electric field is assumed to consist of only the

fundamental mode. The slot electric field in the uniform region is represented

by the source function and a reflected wave with an unknown amplitude, F.

LE uni*yform
Xf (x,z) = -aE.j(x)(exp(-j/3zz) - r exp(+j)3 z))

L

Eznif°r(x,z) = blbE.i(x)(exp(-jz) + F exp(+/3Oz))

The constants a, ... aL, b, ... bL and /3, the propagation constant are deter-

mined using the spectral domain eigenvalue formulation. The longitudinal

dependance of the slot electric field in the perturbed region near the shorted

end is represented with piecewise linear (rooftop) subsectional basis functions

which are defined in Chapter 3. The piecewise linear functions allow a reason-

able approximation to the edge condition for the both the transverse and the

longitudinal components of the electric field at the shorted end. The transverse

dependance of the slot electric field in the perturbed region is represented with

Maxwellian basis functions with variable coefficients. The development of the

linear system is then the same as that for the open-end microstrip discontinuity

which was developed in Chapter 4.
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Figure 5.3: Magnitude of Reflection Coefficient of Slotline Short-circuit Dis-
continuity

5.3 Numerical Results

In Figures 5.3 and 5.4, the magnitude and phase of the reflection co-

efficient versus frequency is plotted for a shorted slotline on a substrate with a

relative dielectric constant of 20.0 and thickness of 3.175 mm for various slot

widths. In Figures 5.5 and 5.6, the normalized resistance and inductance of

the equivalent circuit are plotted. It can be seen that, as with the microstrip

open circuit discontinuity, the radiation loss becomes very large near the cutoff

frequency of the second surface wave mode. In Figure 5.7, the magnitude of

the reflection coefficient for a short-circuited slotline and an open-circuited mi-

crostrip line are plotted for comparison. The substrate thickness and dielectric

constant are the same for the microstrip and the slotline. Also, the slot width is
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the same as the micro-trip width. The microstrip open-circuit exhibits greater

loss because the open-circuited microstrip discontinuity excites the TMo sur-

face wave mode more strongly than the slotline short-circuit discontinuity. This

is because the fields of the fundamental mode of microstrip match those of the

TMo surface wave more closely than those of the fundamental mode of slotline.



Chapter 6

THE MICROSTRIP GAP DISCONTINUITY

6.1 Introduction

Microstrip gap discontinuities are commonly used to achieve capac-

itive coupling in microstrip circuits and antennas. In open structures, mi-

crostrip gap discontinuities can radiate into space waves and surface waves

resulting in losses and spurious coupling. In this chapter we will analyze gap

discontinuities and gap-coupled resonators. This analysis includes the effects

of a two-component, two-dimensional current flow on the conductor and mode

conversion. Through the use of the exact spectral domain Green's function

it includes the effects of space-wave and surface-wave radiation. Like [4], this

method can be applied to asymmetric discontinuities. However, it is more

efficient due to the travelling wave source formulation, requiring only two ma-

trix fills and inversions to obtain the two-port scattering matrix. In the case

of symmetric structures, only one matrix fill and inversion is required with

this method, whereas [19] requires two. Unlike the discontinuities analyzed

in Chapters 4 and 5, the gap and gap-coupled resonator are two-port devices

and therefore, in addition to the reflection coefficient a transmission coefficient

must also be determined.

In Figure 6.1 a microstrip gap discontinuity, gap-coupled resonator,

and coupled resonator bandpass filter are shown. It was desired to deter-

91
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Figure 6.1: Microstrip Gap Discontinuity, Gap-coupled Resonator, and Gap-
coupled Bandpass Filter
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mine whether gap discontinuities interact significantly on open microstrip when

spaced slightly less than one-half wavelength apart as they would be in such a

filter. It is shown that the gap discontinuities do interact at high frequencies

reducing the Q and the rejection of gap-coupled resonators.

6.2 Application of the Method to Microstrip Gap Dis-
continuities

As in the analysis of microstrip open-end discontinuities, the spectral

domain eigenvalue fomulation is used to compute the propagation constant

and the longitudinal and transverse currents for the fundamental mode on an

infinitely long open microstrip. In the general case in which the microstrip

lines on either side of the gap are of different widths, this analysis must be

performed for each side. Far from the discontinuity, the current on the strip is

assumed to consist only of the fundamental mode. The current in the uniform

region on the source side of the discontinuity is represented by an incident and

a reflected wave with an unknown amplitude, F.

L
jz.': o""(r,, z) = a1Jzti(x)(exp(-jI3,z) - F exp(+jflz))

/1

L
J"h°"rr(x, z) = bJ.i(x)(exp(-jOz) + F exp(+jzz))

The current in the uniform region on the load side of the discontinuity is rep-

resented by a transmitted wave with an unknown amplitude, T.

L
Sunif ormz (x,z) = .atJ,(x)(Texp(-O,2 z))

/=1

L

Ju'if or(x, z) = blJI(x)(T exp(-jo, z))
l=1
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The fufidons J and J.1 are the Maxwellian basis functions defined

in Chapters 3 and 5. The constants a, ... aL , b, ... bL and 3,, the propagation

constant are determined in the spectral domain analysis for uniform line. The

longitudinal derendance of the current in the perturbed region near the dis-

continuity is augmented with piecewise linear subsectional basis functions. A

typical arrangement is shown in Figure 6.2 The transverse dependance of the

current in the perturbed region is represented with Maxwellian basis functions

with variable coefficients thus taking into account mode conversion. Note that

the basis functions are really those of two microstrip open-end discontinuities.

Therefore, by using the same testing scheme as was used in the analysis of the

open-end discontinuity we can generate a system of linear equations with the
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following form

[Kc r :9 iht I= rgh

Where K'eft is the coefficient matrix of the linear system developed for the

open-end discontinuity in Chapter 4, Kright is a similar matrix for the right-

hand open-end discontinuity, K oT S is a matrix developed from testing the right

hand side with the left and vice-versa, and S'e f t and Sright are vectors obtained

by testing the source functions with the testing functions for the left and right

open-end discontinuities. These equations are solved to obtain F, T., and the

current on the conductors.

6.3 Extension to Microstrip Gap-Coupled Resonators

The method may be extended to gap-coupled resonators with the

inclusion of more subsectional basis functions as shown in Figure 6.3

6.4 Results

In Figure 6.6 and 6.7, the magnitudes of the transmission coefficients

of two gap-coupled half-wave resonators are shown calculated in the following

two ways. First the scattering matrix for an isolated gap is calculated using

the spectral domain method. Then the scattering matrix of the resonator is

calculated using the scattering matrix of the isolated gap along with those of

a section of uniform microstrip line.

[ r~ [T 3 [Tr~e [Tff" g 2 1 0 [Tgap) [Tjg~a 1
[T"] = [T 'I [T2;I j 0 eJl3.L [Tgl {T'p]j

Second, the spectral domain method is used to model the entire res-
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onator including coupling between the gaps as shown in Figure 6.1. It can be

seen that the coupling between the two gaps has little effect when the resonance

frequency of the resonator is low. However, for shorter resonators the coupling

between the gaps shifts the resonance frequency, lowers the Q, and lowers the

rejection above resonance.

We conclude that the spectral domain method can be effectively ap-

plied to the modeling of gap-coupled resonators. Furthermore, such analysis is

justified as coupling between the two gaps of a gap-coupled resonator can have

a significant effect on the resonant frequency, Q and rejection of the resonator.



Chapter T

CONCLUSIONS

7.1 Summary

A method for the analysis of planar circuits on open substrates has

been presented. Through the use of the exact spectral domain Green's function,

the method includes the effects of space wave and surface wave radiation. The

method has been shown to be applicable to 1-port and 2-port structures. In

particular, the method has been applied to microstrip open-end discontinuities

and slot-line short circuit discontinuities. The method has been applied to gap

discontinuities and gap-coupled resonators.

7.2 Suggestions for Further Applications

7.2.1 Extension to N-port Networks

The deterministic spectral domain method presented here is very gen-

eral and should be useful for analyzing multiport planar networks on open

substrates. As was pointed out in Chapter 6, the travelling wave formulation

is more efficient for analyzing two-port networks than other methods such as

[191. Furthermore, these other methods are difficult to extend to N-port net-

works. To extend this method to an N-port network we simply excite one port

with a known incident wave and then formulate N unknown outward travelling

waves as shown in Figure 7.1 for a 4-port. Therefore, in order to determine the
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entire N x N scattering matrix of a general N port, N calculations must be

performed. Of course, symmetry in the network would reduce the number of

necessary calculations.

7.2.2 Extension to Multilayer Structures

By making use of the immitance approach for the Green's function

derivation, this method is easily extended to multilayer substrate/superstrate

structures. It would be useful to study how surface-wave and space-wave ex-

citation can be controlled through the use of multi-layered substrates and/or

superstrates. It should also be noted that this method may be easily adapted

through a simple modification of the Green's function to structures which are

covered but laterally open.
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7.3 Suggestions for Improvement

7.3.1 Asymptotic Evaluation of the Inner Products

The most time consuming part of the method is the evaluation of the

asymptotic portion of the inner products. It is straightforward to determine

an asymptotic form of the Green's function for large p because the Green's

function is separable in p and 0. However, since the basis functions used here

are separable in a and 03, an asymptotic form for large p is not immediately

evident. An asymptotic form for large p would be most useful because the

space domain calculation of the asymptotic portions of the matrix components

is not compatible with the scheme given in Chapter 3 for precomputing and

storing the Green's function. Also the space domain integration requires high

numerical precision due the subtraction of the source and image contributions.

This problem is greater for electrically thin substrates. Using more rapidly

converging basis functions does not appear to be a better approach, because

the basis functions must be chosen to model the physical current (or field)

which will necessarily exhibit edge conditions. These edge conditions in the

space domain translate into high spatial frequency components in the spectral

domain.

In view of the above difficulties with evaluating the asymptotic por-

tion of the integrands, it seems promising to solve the mixed potential integral

equation (MPIE) in the spectral domain instead of the electric field integral

equation. This is because the Green's functions used in the MPIE converge

faster than those for EFIE. This is easy to see by examining the case of a

homogeneous medium. The electric field Green's function has a - singularity
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at the source point. It is this source singularity that gives the spectral do-

main electric field Green's function its asymptotic tail. On the other hand the

Green's functions used in the MPIE have - type singularities at the sourceR

point. Therefore, they have more rapidly converging spectral domain coun-

terparts. Although the MPIE requires the determination of both charge and

current, the added computation may be offset by the savings gained by faster

convergance. One disadvantage to this method is that, as far we have found, no

straightforward method such as the immittance approach exists for determining

the necessary Green's functions.

7.3.2 Generalization of Basis Functions

Although in all of the work presented here, entire domain basis func-

tions were used to represent the transverse dependence of the current or field

quantities, it would be useful to also make use of subsectional basis functions

for both the transverse and longitudinal dependance. For uniform line, en-

tire domain functions such as the Maxwellian functions are most efficient for

modelling the transverse dependance, just as entire domain functions are most

efficient to describe the longitudinal dependence of travelling wave functions.

However, it appears that in the regions near discontinuties, subsectional ba-

sis functions are more efficient for the representation of the current or field.

For example, in order to analyze a step-width discontinuity, it would be most

efficient to use subsectional basis functions to represent the transverse depen-

dance of the current near the discontinuity. Also, it would be useful to develop

more general subsectional basis functions for the modelling of complicated dis-

continuities such as tapers and smooth bends. The use of rectangular basis
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functions to approximate a smooth curve may lead to error due to the large

current density along the edge. A triangular based function would allow a more

continuous approximation of smooth curves.

7.3.3 Computational Algorithm

By far the largest speedups have been obtained through modifications

to the computational algorithm. It appears that great improvements could still

be made in this area. The bulk of the computational effort occurs in evaluating

the Green's function. As was pointed out in Chapter 3, a large savings was real-

ized by precomputing and storing the Green's function so that the entire matrix

could be integrated at once. This savings may be increased by precomputing

the Green's function for all #, storing the values in a database, and then using

an interpolation scheme to determine intermediate points. It appears that com-

putational methods such as the one presented here are quite amenable to vector

processing because of the large amount of non-interelated computation. There-

fore, despite the fact that the method requires large amounts of computation,

it could be utilized with small vector processors for engineering purposes.



Appendix A

DERIVATION OF THE GREEN'S FUNCTION FOR
THE GROUNDED SLAB

In this appendix we give some of the details of the immitance deriva-

tion of the spectral domain Green's function. The immittance formalism is due

to [13] and is included here for completeness. We begin by noting that from

the Fourier transform relationship

E(x, y, z) ++0 (a, y, 0) exp(-j(ax + 6z))dad3 (A.1)
-00 -00

the space domain field and current quantities are superpositions of the inho-

mogeneous spectral waves propagating in the direction 0 from the z-axis where

0 = tan- ' If we define the coordinate transformation

u = zsin()- xcos(0) (A.2)

v = zcos(0) + xsin(0) (A.3)

we can decompose the spectral fields into TM-to-y (Eu, E , , and H,, ) and TE-

to-y (Hv, H, and E,,). The TM-to-y fields are created by J, and the TE-to-y

fields are created by J.,. We define transmission line characteristic admittances

YTM1 and 'TM2 as the wave admittances seen by a transverse-magnetic-to-y

wave travelling in media 1 and 2 of Figure 2.1

fITM1 -- I (A.4)
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YTM2 =(A5) =+ V

where the superscript "+" implies waves travelling in the positive y direction

and "-" implies waves travelling in the negative y direction. Likewise, we

define transmission line characteristic admittances YTM1 and kTM2 as the wave

admittances seen by a transverse-magnetic-to-y wave travelling in media 1 and

2 of Figure 2.1

YTE1 =-(A.6)

kTE2 = (A.7)

The y-propagation constants may be obtained from the dispersion relations for

each region and are given by

2= + 0 2 - k0, (A.8)

72 = a 2 + 3 2 - Rk2. (A.9)

The wave impedances may be obtained from Maxwell's equations and are given

by

YTM, = j7..1..o (A. 10)

- _ 71Y/TM2 =- j12en (A.]I1)

YITEI = 71 (A.12)

YTE2 = /2 (A.13)jWY,

We may now draw the equivalent circuits in for the TE and TM modes as

in Figure A.1. We define the driving point impedances Y1e and as the
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admittances looking upward and downward at y = d respectively.

e=- (A.14)
yei

= +!fIu2 (A.15)

fh +ftvi
I (A.16)

- /A,2 (A.17)

At the interface, y = d, the magnetic field is discontinuous because of the

electric current at the interface.

ftl - /.2 "-- Jv (A.18)

/t, 2- /tI = j. (A.19)
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At the interface, y = d, the electric field is continuous.

t', = k,,2== k,(A.20)

Eul =4 2 = u(A.21)

Therefore we can write

-4Ze (A.22)

= ,, =

=- j,2h (A.23)

where

Y" = YTM, (A.24)

Y = YTM 2 coth(72d) (A.25)

= kTE1 (A.26)

2h = YTE 2 coth(-y2d). (A.27)

The transformation back into the x, z coordinates is

-NN. (e _ 2h j. (A.28)
&, =-N;,N. (2e - 2h) j.,

- (N22e + N22h) j. (A.29)

where

Na = (A.30)

N, = (A.31)
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Therefore, spectral domain Green's function is given by

22N~e + N2Zh) (A.32)

2 = -;X(e- 2") (A .33)

2.= -N .N.,(e _ 2 h) (A.34)

= 22N~h + N2Ze) ( 5



Appendix B

DERIVATION OF THE GREEN'S FUNCTION FOR
THE UNGROUNDED SLAB

The derivation of the Green's function appropriate for the analysis of

slotline is a simple modification of that for the Green's function in Appendix

1. Since the medium below the slab is the same as that above, we draw the

equivalent circuits in for the TE and TM modes as in Figure B.1.

Therefore, the driving point impedances at y = d are

Y = YTM1 (B.1)

=Y TEI (B.2)

-Tm2 + YTm1 coth(-12 d) B.3)
2; =kTMI + }-TM 2 coth(t 2 d)

IYTE2 (VTE2 + iTE1 coth(7r2d) (B4)
kYTEI + l TE2 coth(y2 d)

= +(B.5)
ye+ ye

= 1 (B.6)

As pointed out in chapter 4, the inverted Green's function is then given by

1 1

= - (B.8)
Ze Zh-1 1

= -(B.9)
Ze Zh
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N. (B.10)
ze XZh

As with the Green's functions z.... Z for the grounded dielectric

slab, Y,,... Yz have a branch point at p = k0 . Unlike 2 z ... 2 ,, Yk ... Yzz

are not well behaved at the branch point. This can be seen by defining

Ze
= Y+ y2e (B.11)

Z h

= + (B.12)

Now the Green's function is rewritten as

,X= - NzY (B.13)

k. = -N-,N,(Ye- yh) (B.14)

kz, = -ixN.(ke- h) (B.15)

.NY= -N - Y". (B.16)

It can be seen that, because 'TM1 is singular at p = ko, yke is singular at p = ko.

It should be stressed, however, that this point constitutes a branch point and

does not contribute to the integral.

As with the Green's functions 2 ... , for the grounded dielectric

slab, l ... _" do not have a branch point at p = ko.

| |4•,
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